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Big Data

Big Data. . .
What is it?

a) xxxBytes
b) Storage
c) Manipulation
d) Interpretation
e) Fit

Methodological / Computational Statistics (?)
‘Robustness’ / ‘Scalability’
Algorithmic Design
‘Sufficiency’
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“Mine Is Bigger Than Yours”
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MCMC for Big Data

Typically have (with x as data if we are in the Bayesian context ...)

π(x) ∝
N∏

i=1

fi(x)

Want to avoid calculating π(x) at every iteration of an MCMC.

Multi-Core Methods
Break data into K pieces / kernels
Compute posteriors
Recombine
Recombination Approaches: Averaging (Xing / Scott / Dunson); KDE
(Xing / Dunson)

Single-Core Methods
Know something about your posterior – Firefly MCMC
Pseudo-Marginal – Use subsampling to estimate likelihood. . .
Employ gradient based MCMC algorithms. . .
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Pseudo-marginal methods

Eg for the Metropolis algorithm, need to accept a proposed move from θ to
φ with probability

min
{

1,
π(φ)

π(θ)

}
Pseudo-marginal MCMC (Andrieu + R, 2009, Ann Stat) allows us to
instead use unbiased positive estimators of π(θ) and π(φ), accepting
instead with probability

min
{

1,
π̂(φ)

π̂(θ)

}
.

There is no systematic bias induced by this: the cost comes in the mixing
of the chain.
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Pseudo-marginal methods for big data?

Can we have positive unbiased estimators for
∏N

i=1 fi(x) which

1 cost o(N) to compute;

2 have variance which is o(N)?

Positive estimators of this type do exist but the answer the the above
question appears to be no.

Estimating products unbiasedly is much more expensive than estimating
sums unbiasedly.
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Gradient Based Schemes

Traditionally used where π - high dimensional / intractable target

Our context: π(x) = p(x)
∏N

i=1 fi(x).

Langevin Diffusion: dXt =
1
2
O log π(Xt ) dt + dBt has invariant distribution

π.

Nice structure: the diffusion drift is a sum.

∇ log π(x) = ∇ log p(x) +
N∑

i=1

∇ log fi(x)
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Gradient Based Schemes

Two major problems with implementation of using this to sample π.

exactness

infinite time horizon

How can we deal with this?

Discretise: Langevin increments ≈ N
(
1
2
O log π(Xt )∆t ,∆t

)
. . .

Euler-Maruyama: Xt+∆t = Xt +
1
2
O log π(Xt )∆t + ξ where

ξ ∼ N(0,∆t)
More problems. . .

Computational cost
Target
Metropolis correction (MALA). . .
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Gradient Based Schemes: an alternative?

The Exact Algorithm for diffusion simulation (Beskos, Papaspiliopolous
and R, 2006, Bernoulli and 2008, MCAP) allows in principle to simulate
exactly from Langevin diffusion on a fixed finite time interval.

Avoids the need for an accept/reject step!

Big problem. . .

Step 1: h(Xt ) ∝ (π(Xt ))1/2 exp
{
−

(Xt − X0)2

2t

}
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The ScaLe algorithm

Scalable Langevin Exact Algorithm

Continuous time, multi-level splitting, retrospective sequential sampler

The methods involves subsampling from the big data set

Requires: (log fi)′, (log fi)′′, (log p)′, (log p)′′, N, (x̂)

Parallelisable (Non-Trivially) (not to be discussed in this talk)
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ScaLE

Computational Cost vs. Data Size

log(Data Size)

lo
g(
C
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on

al
C
os
t)

0 5 10 15 20 25

Illustrative ScaLE Cost
Linear Cost
Sub-linear Cost (ScaLE)
Super-linear Cost (Existing Methods)
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Diffusions

Consider a diffusion given by a d-dimensional diffusion process

dXs = α(Xs) ds + dBs , s ∈ [0, t] . (1)

Assume

1 The diffusion in (1) is non-explosive.

2 α is continuously differentiable in all its arguments.

3 There exists l > −∞ such that φ(u) :=
(
‖α(u)‖2 + ∇2A(u)

)
/2 − l ≥ 0.

4 There exists a function A : xd → R such that α(u) = ∇A(u).
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Transition density

The transition density of (1) is typically intractable but we have the
Dacunha-Castelle formula

pt (x | x0) = Nt (x − x0) exp{A(x) − A(x0) − lt}Ex0,x

[
exp

{
−

∫ t

0
φ(Xs)ds

}]
(2)

where Nt (u) denotes the density of the d-dimensional normal distribution
with mean 0 and variance t Id evaluated at u ∈ Rd .

The expectation is taken w.r.t. a Brownian bridge, xs , s ∈ [0, t], with
X0 = x0 and Xt = xt .
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Limiting distribution

The diffusion’s limiting distribution (if it exists) is more tractable.

Theorem

The diffusion in (1) is positive recurrent if and only if∫
Rd

e2A(z)dz < ∞ .

If either condition holds, then the diffusion admits a unique invariant
probability measure with Lebegue density given by

ν(dx) =
e2A(x)dx∫

Rd e2A(z)dz
:= v(x)dx (3)

and
pt (x | x0)→ v(x) (4)

with this convergence of densities holding for all x ∈ Rd , and also in L1.
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Idealised Exact Algorithm

Maybe we can try Rejection Sampling on diffusion path space.

LetQ (= Qx
0,T ) be the law of our diffusion (1), which is absolutely

continuous with respect toW (Brownian motion started at x) with
Radon-Nikodym derivative given by Girsanov’s formula:

dQ
dW

(X) = exp
{∫ T

0
α(Xs) dWs −

1
2

∫ T

0
α2 (Xs) ds

}

= exp
{

A(XT ) − A(X0) −

∫ T

0
φ (Xs) ds

}
(Recall, φ = (α2 + α‘)/2.)
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Idealised Exact Algorithm (continued)

Set dW to be probability measure proportional to eA(XT ) · dW so that

dQ
dZ

(X) ∝ exp
{
−

∫ T

0
φ (Xs) ds

}
Typically φ bounded below so this RN derivative is bounded.
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Idealised Exact Algorithm (continued)

1 Simulate X ∼ Z

2 With probability PW(X) :=
1
M

dQ
dZ

(X) set (I = 1), else (I = 0)

X |(I = 1) ∼ Q.

But how do we carry out rejection step?
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Carrying out rejection step

How can we simulate, store and calculate integrals from X ∼ Z?

Simulation of finite skeletons of biased Brownian motion Z is
straightforward.

Acceptance probability can be written as

P = exp
{
−

∫ T

0
(φ(Xs) − `) ds

}
where φ(Xs) − ` is non-negative.

P is just the probability that an event of hazard rate φ(Xs) − ` has not
occurred by time T .

Can achieve this event by Poisson thinning (sometimes quite complicated)
from a contant hazard rate.
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Exact Algorithm Output

Time

X

s t

x
=

y
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Exact algorithms

Many extensions of these ideas in the literature: EA0, EA1, EA2, EA3,
JEA, CIS ... Relaxations of smoothness conditions, multi-dimensional,
time-inhomogeneous versions of these algorithms ....

Methods are surprisingly efficient. There is no intrinsic cost of exactness.

Methods are genuinely multi-dimensional, but will scale at least linearly
with dimension.

But existing methods do rely on being able to identify φ.
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ScaLE Outline

Can we use the EA framework for big data?

The idea would be to completely avoid a Metropolis-Hastings accept/reject
step, which would be O(N) expensive.

Recall: α(Xt ) :=
1
2
O log π(Xt )

Two big problems:

1 Simulating from A is O(N).

2 Calculating α, α‘ is O(N)
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pT (0, x) ∝ exp
{
−

x2

2T

}
︸        ︷︷        ︸

Gaussian

· exp
{∫ x

0
α(u) du

}
︸                  ︷︷                  ︸

(π(x))1/2

· P[”Surv”]︸     ︷︷     ︸
”PE” / Aux RV F

→ π(x)

If we ignore the middle term, we should bias pT (0, x) by the ratio π(x)−1/2.
Therefore expect that we have convergence of this modified continuum of
distributions to π(x)1/2.

So we solve problem 1 above, only to converge to the wrong distribution!
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Solution to problem 1

Double Drift (!): α(Xt ) := O log π(Xt )

pT (0, x) ∝ exp
{
−

x2

2T

}
︸        ︷︷        ︸

Gaussian

· exp
{∫ x

0
α(u) du

}
︸                  ︷︷                  ︸

π(x)

· P[”Surv”]︸     ︷︷     ︸
”PE” / Aux RV F

→ (π(x))2

p̃T (0, x) ∝ exp
{
−

x2

2T

}
︸        ︷︷        ︸

Gaussian

· P[”Surv”]︸     ︷︷     ︸
”PE” / Aux RV F

→ π(x)

Type I quasi-stationary distribution

But does it converge??
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Convergence to stationarity

We only have L1 convergence of pT (0, x) to π as T → ∞.

We require a stronger f -norm result:

pT (0, ·)→ π

in L1(f) where f(x) = e−A(x) = π−1/2(x) where the f -norm is given by

‖g‖f = sup
h; |h|≤f

∫
|h(x)g(x)|dx

It turns out that we get this f -norm convergence (essentially) when the
Langevin diffusion has invariant density ν such that

∫
ν(x)1/2dx < ∞

But this is immediate when we use ν = π2 (Fort and R, 2005).
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What about problem 2?

Ie how do we overcome the fact that we cannot evaluate φ pointwise
without incurring an O(N) cost?

Use a retrospective sampling idea.

The EA construction requires (in thinning Poisson process argument) to
kill a proposed path with probability

k =
φ(Xs)

M
.

Actually we can sample an event of this probability by instead sampling
from an event of probability K where K is an unbiased estimator of k
taking values in [0, 1].

Can do this without any loss of efficiency, unlike the pseudo-marginal
MCMC methodology.
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Sequential Monte Carlo

Implementation through continuous-time sequential monte Carlo
methodology. Resampling needed to make the method robust over long
time periods.

Simultaneously project a population of particles. Trajectories die according
to the prescribed hazard rate, and are replaced by resampling from
currently alive population.

Many important details about how to make algorithm efficient, eg by not
permitting poisson rate to be O(N) are omitted.
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Example III
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Example V
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Example VI
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Example VII
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Example VIII
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ScaLE

Computational Cost vs. Data Size
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Final comments

This method provides provide “exact” simulation from posterior
distributions from Bayesian statistical analyses, for “arbitrarily large”
data sets.

High-dimensional parameter spaces will be difficult, though not
necessarily impossible to deal with.

It is always important to bear in mind that exactness may not be
needed or worthwhile.

However there is no intrinsic cost for exactness.

Current applications on Bayesian analysis for massive data sets: eg
logistic regressions, contaminated regression models....

Scales extremely well in size of data. Scaling in dimensionality of
parameter space is less clear...
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A diffusion with killing

Consider the collection of probability measures {Kt ,x0 , t ≥ 0} with Kt ,x0

describing a probability law on C[0, t] such that Kt ,x0(X0 = x0) = 1 and

dKt ,x0

dWx0

(X) = κ−1
t ,x0

exp
{
−

∫ t

0
φ(Xs)ds

}
(5)

where

κt ,x0 = EWx0

[
exp

{
−

∫ t

0
φ(Xs)ds

}]
. (6)

Kt ,x0 can be interpreted as normalised Brownian motion killed
instantaneously at a state-dependent rate φ(Xs).
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LetMt ,x0 be the marginal distribution of Kt ,x0 evaluated at time t . From (5),

Mt ,x0(dx)

dx
:= m(x) = κ−1

t ,x0
Ex0,x

[
exp

{
−

∫ t

0
φ(Xs)ds

}]
Nt (x − x0) (7)

which from (2) can be written

m(x) = κ−1
t ,x0

exp{−A(x) + A(x0) + lt}pt (x | x0) (8)

Since e−A(x) is unbounded, we therefore need a little more than L1

convergence of pt (x | x0) to ensure L1 convergence of m to a probability
density proportional to eA(x).
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f -norm convergence

Fortunately stronger results exist.

Define the f norm of a signed measure ξ to be

‖ν‖f = sup{ξ(g); |g| ≤ f } (9)

eg f = 1 is usual total variation distance.

We need an f -norm convergence result forMt ,x0 with f ∝ e−A(x).

The easiest theory is for the case of geometrically ergodic Markov
processes. But here we give the more general polynomically ergodic case.
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Polynomial ergodicity

Theorem

Fort and R (2005)
Let 1 ≤ V < ∞ be a Borel function and 0 < α ≤ 1. Assume that

(i) some skeleton chain Pm is irreducible.

(ii) there exists a closed petite set C such that supC V < ∞ and for all
α ≤ η ≤ 1, t 7→ Vη−α(Xt ) is integrable P-a.s. and

AVη ≤ −cηVη−α + b1C , 0 ≤ b < ∞, 0 < cη < ∞. (10)

Then there exists an unique invariant distribution π, π(V1−α) < ∞ and for
all 0 < p < 1 and b ∈ R or p = 1 and b ≥ 0 or p = 0 and b ≤ 0,

lim
t→+∞

(1+t)(1−p)(1−α)/α (log t)b ‖P t (x, ·)−π(·)‖V (1−α)p (ln V)−b ∨1 = 0 x ∈ X.
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The Langevin diffusion case

Consider the simplest case - that’s all we need later, although the theory is
much more general.

dXs = α(Xs) ds + dBs , s ∈ [0, t] . (11)

where α =
∇ log v(x)

2
Very suitable for Lyapunov function methods by taking V(x) ∝ π(x)−r for
some 0 < r < 1.

Direct application as in Fort and R, 2005:
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Theorem

Consider v is a positive, d-dimensional, C2, invariant density of X.
Suppose there exists some 0 < β < d−1 with

0 < lim inf
|x |→+∞

∣∣∣∇ log v(x)
∣∣∣

vβ(x)
≤ lim sup
|x |→+∞

∣∣∣∇ log v(x)
∣∣∣

vβ(x)
< ∞, (12)

2β − 1 < γ := lim inf
|x |→+∞

Tr(∇2 log v(x))

|∇ log v(x)|2
≤ lim sup
|x |→+∞

Tr(∇2 log v(x))

|∇ log v(x)|2
< ∞.(13)

For all 0 ≤ κ < 1 + γ − 2β,

lim
t→+∞

(t + 1)τ ‖P t (x, ·) − ν(·)‖1+v−κ = 0 τ <
1 + γ − 2β − κ

2β
. (14)
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When are these conditions satisfied?

Under some regularity conditions, a density v with tail that recede at least
as quickly as

‖x‖−d+k

requires that k > d for the conditions of the theorem to be satisfied.

In other words, we require that v be a density such that v1/2 is integrable.
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