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An overview 
 

 

 

•Noise is important – how do we model it? 

 

•Multiscale stochastic models and simulations for Systems   Biology 

 

•Taking ideas from the solution of ODEs : extrapolation, Runge-Kutta and 

linear multistep methods. 

 

•Simulation results and conclusions. 

 



Noise is important. 

How do we model it? 

  



Motivation: Biological evidence of noise 

• “Stochasticity is evident in all biological processes … the proliferation of 
both noise and noise reduction systems is a hallmark of organismal 
evolution” – Federoff et al.(2002). 

 

• “Transcription in higher eukaryotes occurs with a relatively low frequency 
in biologic time and is regulated in a probabilistic manner” – Hume (2000). 

 

• “Gene regulation is a noisy business” – Mcadams et al. (1999). 

 

• “Initiation of gene transcription is a discrete process in which individual 
protein-coding genes in an off state can be stochastically switched on, 
resulting in sporadic pulses of mRNA production” – Sano  2001. 

 

• It is essential to study individual cells and to measure the cell to cell 
variations in biological response, rather than averaging over cell 
populations” – Zatorsky et al. 2006. 

• Intrinsic noise due to small numbers of molecules and uncertainty of 
knowing when a reaction occurs and which it is. Relative uncertainty  is 
inversely proportional to square root of number of molecules. 

 



Michaelis – Menten Reaction 
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The stoichiometric vectors and the Law  of Mass Action gives 
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Modelling Regimes 
 

• Discrete and stochastic – Small numbers of molecules. 
Exact description via Stochastic Simulation Algorithm 
(SSA) - Gillespie. Large computational time.  

 

•  Continuous and stochastic - A bridge connecting 
discrete and continuous models.  

 Described by SDEs  – Chemical Langevin Equation. 

  

• Continuous and deterministic – Law of Mass Action. 
The Reaction Rate equations. Described by ordinary 
differential equations. Not valid if molecular populations 
of some critical reactant species are small. 

 
 D. Gillespie (1977) Exact stochastic simulation of coupled chemical 

reactions, J. Phys. Chem. 81, 2340. 

 

j
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Towards multiscale methods in 

Systems Biology 

  



Efficient Discrete algorithms - Leap methods  

        Poisson (Gillespie, JCP, 115(2001),1716) 

          Binomial (Tian and Burrage, JCP, 2004) 

Assumption: In the time period            , the number of 

reactions for reaction channel       is Poisson (Binomial).  

Larger   

For the given criterion    ,  choose a stepsize     to satisfy 

the leap condition 

Generate Poisson (Binomial) numbers  

Update the system 
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Multiscale Discrete  methods 

• The SSA can be expensive –compute m reaction times and     can be small 

 

• Given a subinterval of length      , if we can determine how many times each 
reaction channel fires in each subinterval, we can forego knowing the precise 
instants at which the firings took place.  Thus we could leap from one 
subinterval to the next, rather than one reaction to the next. 

 

• How long can that subinterval be?  Tau-leaping is exact for constant propensity 
functions, thus    LEAP CONDITION: is selected so that no propensity function 
changes “appreciably”. 

 

• If the reactant population is large  it  can be moderate sized and the tau leap 
method gives the Explicit Euler method in SDE  and ODE regimes. 

 

• It can also be viewed as the Euler method for solving an SDE driven by jump 
processes. 

 

• This is the key to looking at other methods based on ODE techniques: 
extrapolation, Runge-Kutta and linear multistep methods. 

 



Extrapolation 

  



I. T. Szekely, K. Burrage, R. Erban, K. C. Zygalakis (2012): A higher-order numerical 

framework for stochastic simulation of chemical reaction systems, BMC Systems 

Biology.2012, 6:85, DOI: 10.1186/1752-0509-6-85. 

By obtaining a global error expansion for a general weak first-order method, we 

prove that extrapolation can increase the weak order of convergence for the 

moments of the Euler and the midpoint theta and tau leap methods, from 1 to 2. 

We use a discrete stochastic global expansion via  

Problem 





II. T. Székely, K. Burrage, K. C. Zygalakis and M. Barrio  (2014): Efficient simulation 

of stochastic chemical kinetics with the Stochastic Bulirsch-Stoer extrapolation 

method, BMC Systems Biology, 2014, 8:71 DOI: 10.1186/1752-0509-8-71. 

has weak order two in mean and variance 

Results 



Mutually inhibiting enzyme system 

Why do the methods behave this way? Small noise SDEs  



Runge-Kutta and linear 

multistep methods 

  



        III. Poisson Runge-Kutta methods 

 

 

 
• Example: s = 2, explicit 

 

 
• Note 

 

 

 

 

• But not truly high weak order as we not capturing higher order 

moments. 
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IV. P.Rue, J.Villa Freixa and K. Burrage (2010): Simulation methods with extended 
stability regions for stiff biochemical kinetics, BMC Systems Biology, 
4:110doi:10.1186/1752-0509-4-110. 

Stochastic Runge-Kutta method 

Test problem 

Trapezoidal method 

For an explicit method we want  

as close to one for as large a range  

of z as possible.  This leads to 



Schlogl test problem 

Results: 

Select 



V. Stochastic Linear Multistep Methods for the Simulation of 

Chemical Kinetics, JCP 15, M. Barrio, K. Burrage, P.Burrage 
 

ODE: Linear multistep method 

 

Weak order 2 method 



Stochastic Adams Bashforth 

Linear test problem 

Stochastic Adams Moulton :PC 



Weak order in mean and variance 

X+Y -> 0 

 

Kullback Leibler distance for 

 

(i) Linear problem 

(ii) Michaelis Menten problem 



(a) nuclear translocation of particles Ac followed by a unary reaction An → Bn  and the 

translocation reaction competing with the unary reaction Ac → Bc.  

(b) nuclear translocation of Ac followed by a nuclear binary reaction An + Bn → Cn 

followed by the cytoplasmic translocation of the product Cn.  

(c) upon translocation molecules An and Dn compete for the same binding partner Bn 

(An + Bn → Cn and Dn + Bn → En)  

(d-e) upon translocation molecules Ac are able to dimerize or bind to a species initially 

localized in the cell membrane.  

(f) upon translocation molecules Ac dimerize with molecules Bc and their product Cc is 

able to translocate back to the nucleus.  

incorporate spatial information by 

means of tailored, probability 

distributed time-delays. 

VI. T Marquez-Lago, A. Leier and K. Burrage (2010): Probability distributed time delays: integrating 

 spatial effects into temporal models, BMC Systems Biology, 4:19doi:10.1186/1752-0509-4-19. 

 



                                    Conclusions 
 
• Need for new stochastic methods (with good order and stability properties) 

in the discrete setting for Intrinsic noise modelling in Systems Biology. 

 

• Need for multiscale approaches. 

 

• We can use ideas from the deterministic setting to construct effective 

methods. 

 

• But it is not easy to construct methods with truly high order in both mean 

and variance 

 

• Issues of the sampling error and multi level (Giles) approaches to improve 

efficiency – applied to discrete case by Andersen and Higham.  

 

• What can be done spatially? 



Oxford 

Blanca Rodriguez, Ciara 

Dangerfield, David Kay, 

Kostas.Zygalakis, Tamas Szekely 

Acknowledgements: 

Australia 

P. Burrage, (QUT) 

Tian Tianhai (Monash) 

Spain 

Pau Rue and Jordi Villa  

(Barcelona) 

Manuel Barrio (Valladolid) 

Japan 

Yoshio Komori (Nagoya) 

Andre Leier 

Tatiana Marquez-Lago (Oist) 


