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An overview

*Noise is important — how do we model it?
*Multiscale stochastic models and simulations for Systems Biology

*Taking ideas from the solution of ODEs : extrapolation, Runge-Kutta and
linear multistep methods.

«Simulation results and conclusions.
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Noise Is important.
How do we model It?
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Motivation: Biological evidence of noise

“Stochasticity is evident in all biological processes ... the proliferation of
both noise and noise reduction systems is a hallmark of organismal
evolution” — Federoff et al.(2002).

“Transcription in higher eukaryotes occurs with a relatively low frequency
In biologic time and is regulated in a probabilistic manner” — Hume (2000).

“Gene regulation is a noisy business” — Mcadams et al. (1999).

“Initiation of gene transcription is a discrete process in which individual
protein-coding genes in an off state can be stochastically switched on,
resulting in sporadic pulses of mMRNA production” — Sano 2001.

It is essential to study individual cells and to measure the cell to cell
variations in biological response, rather than averaging over cell
populations” — Zatorsky et al. 2006.

Intrinsic noise due to small numbers of molecules and uncertainty of
knowing when a reaction occurs and which it is. Relative uncertainty Is
iInversely proportional to square root of number of molecules.



Michaelis — Menten Reaction

S,+S, —4S, a,(X)=kS,S:
S3—2 35S +8S; a,(X)=k2S3
S, —2>P+S1  a,(X)=ksS,

The stoichiometric vectors and the Law of Mass Action gives

-1 1 1
vi=|-1|, v,=| 1| v,=
1 -1 -1

X'(t)=3" vai(X(t)



Modelling Regimes

Discrete and stochastic — Small numbers of molecules.
Exact description via Stochastic Simulation Algorithm
(SSA) - Gillespie. Large computational time.

X < X +v,

Continuous and stochastic - A bridge connecting
discrete and continuous models.

Described by SDEs — Chemical Langevin Equation.

Continuous and deterministic — Law of Mass Action.
The Reaction Rate equations. Described by ordinary
differential equations. Not valid if molecular populations
of some critical reactant species are small.

D. Gillespie (1977) Exact stochastic simulation of coupled chemical
reactions, J. Phys. Chem. 81, 2340.



Towards multiscale methods In
Systems Biology
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Efficient Discrete algorithms - Leap methods

Poisson (Gillespie, JCP, 115(2001),1716)
Binomial (Tian and Burrage, JCP, 2004)

Assumption: In the time period (t,t+7), the number of

reactions for reaction channel R; is Poisson (Binomial).
Larger =

For the given criterion £ , choose a stepsize 7 to satisfy
the leap condition |a; (X +2)-a;(X)|<za,(X), A=ra(X)r

Generate Poisson (Binomial) numbers

Update the system M
tet+z,  X(t+7)« X(t)+> v,P(a;(X(t)),7)
szl
tet+z,  X(t+7)« X({t)+> v,B(N b, (X(t))7)

j=1



Multiscale Discrete methods

The SSA can be expensive —compute m reaction times and t can be small

Given a subinterval of length < , if we can determine how many times each
reaction channel fires in each subinterval, we can forego knowing the precise
instants at which the firings took place. Thus we could leap from one
subinterval to the next, rather than one reaction to the next.

How long can that subinterval be? Tau-leaping is exact for constant propensity
functions, thus LEAP CONDITION: is selected so that no propensity function
changes “appreciably”.

If the reactant population is large it can be moderate sized and the tau leap
method gives the Explicit Euler method in SDE and ODE regimes.

It can also be viewed as the Euler method for solving an SDE driven by jump
processes.

This is the key to looking at other methods based on ODE techniques:
extrapolation, Runge-Kutta and linear multistep methods.



Extrapolation
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l. T. Szekely, K. Burrage, R. Erban, K. C. Zygalakis (2012): A higher-order numerical
framework for stochastic simulation of chemical reaction systems, BMC Systems
Biology.2012, 6:85, DOI: 10.1186/1752-0509-6-85.

By obtaining a global error expansion for a general weak first-order method, we
prove that extrapolation can increase the weak order of convergence for the
moments of the Euler and the midpoint theta and tau leap methods, from 1 to 2.

We use a discrete stochastic global expansion via
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ADsolute error
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ll. T. Székely, K. Burrage, K. C. Zygalakis and M. Barrio (2014): Efficient simulation
of stochastic chemical kinetics with the Stochastic Bulirsch-Stoer extrapolation

method, BMC Systems Biology, 2014, 8:71 DOI: 10.1186/1752-0509-8-71.

The Bulirsch-Stoer method is an accurate ODE solver based on Richardson extrapolation [25,26]. A Neville

table is built by repeated extrapolation of a set of initial approximations with stepsizes that are different

subintervals of a larger overall step 7, and is then used to find a very accurate solution. This happens

inside each timestep, allowing 7 to be varied between steps.

Results

X — 2X, with ¢ = 0.2, X(0) = 1000

f-trapezoidal r-leap (TTTL)
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Error in variance

10

-
o

10

has weak order two in mean and variance
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Hu Y, Ia T, Min B: A weak second order tau-leaping method for chemical kinetic systems. Journal of

Chemical Physics 2011, 135:024113.




Ex B Ei+A, k=15
En 8 EpiB k15 Mutually inhibiting enzyme system
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Why do the methods behave this way? Small noise SDEs

dX(t) = f(t,X(t))dt + cg(t, X (t))dW (t) O(7? + 77€"), where ¢ < p.



Runge-Kutta and linear
multistep methods
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Ill. Poisson Runge-Kutta methods

Y, =X, +ZUkF{ZS:W”ak(Yj),T]
X1 =X, +Zukp(iﬂjak(vj), r]

Example: s = 2, explicit
Y =X, +> 0P€a(X,)r_
Xoa =X, +> 0, P€-10 3, (X,)+% a(Y), 7_
Note
a;(x) z>>0

P€. (X), 7 » N € (x)r.a,(x r > a:(x) 7+,/a (x) 7 N(0)
—a,(X) 7 +.[a, (x) AW, ().

But not truly high weak order as we not capturing higher order
moments.



IV. P.Rue, J.Villa Freixa and K. Burrage (2010): Simulation methods with extended
stability regions for stiff biochemical kinetics, BMC Systems Biology,
4:110d0i:10.1186/1752-0509-4-110.

Stochastic Runge-Kutta method

m

dn = Z VjL (T'.- a'j(Xn))

=1 L(r,x)=P(rz) —1x,
i—1
Y, :Xn+rza-ijf(Yj) +wid,, i=1,....s
f(x) = X7, vja;(x)
Xng1=Xn+7 ) 3E(Y;) +dn
=1
Test problem
k1
S1 k;’Sz z = —’T(k‘-l + kg) E[Xn+1] = R(TW)E [X,,]
| .- 2 (R(z)-1
Var [Xoc] = t(2)Var [X°] YO =\ ae T
1+ %z .-
Trapezoidal method R(z)=—3_ and v(z)=1 vz
2
Yl =¥n

For an explicit method we want |
as close to one for as large a range Y, =yn+@iic1 (7f(Yi—1)+dy), i=2,...,s

of z as possible. This leads to
P Vot = yn + 7E(Ys) + dn.



Bound _Stages Stability [ Factor vs. | Norm. factor
Select £ |'HL’(Z) _ 1| <€ € s ls,e T-leap vs. T-leap
" 0.10 3 3.94566 19.73 0.58
5 10.1813 50.9 10.18
0.25 3 5.89563 14.74 4.91
5 11.0001 27.5 5.5
0.50 3 8.12004 12.18 4.06
5 15.5997 234 4.68
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V. Stochastic Linear Multistep Methods for the Simulation of
Chemical Kinetics, JCP 15, M. Barrio, K. Burrage, P.Burrage

ODE: Linear multistep method

YUn+1 = Zﬂjyn+l—j + hz B3; fn—l—l —j

Weak order 2 method

David F Anderson and Jonathan C Mattingly. A weak trapezoidal
method for a class of stochastic differential equations. Communications

in Mathematical Scifnces 9(1), 2011.

=X, +Zyj mj (X))

l; = ma.:c{2aj(XP) —aj(X,).0}, j=1,....M
M
Xpo = X7 +ZUJP( 7l;).
j=1

This suggests that in order to construct methods of weak order two there
must be samples of the form P(7a;(P(era;(X,)))). These samples are akin
to the double integrals of Wiener processes that are needed to construct

higher order methods for SDEs [3].



Linear test problem XSo

k
Stochastic Adams Bashforth  X,..1 =X, —P(z Y B;jXn115), z=r7c

j=1

Stochastic Adams Moulton :PC Xntr = Xn = z;-ﬁi}{nﬂ—j

k
Xny1=Xpn — P[;:Z BiXny1—j + 3_§DXH+1)
j=1
Theorem 3.1. If the underlying AM has order p and the order of the start-

ing procedure in the mean is p or p— 1 then the mean order of the SAM will
also be p.

Corollary 3.1. The mean order of the SABMs (k = 3) and SAMMs (k = 2)

will be three if the O-trapezoidal T-leap method is used as a starting procedure.

Theorem 3.2. The correlation order of the SABMs (k = 3) is three if the
O-trapezoidal T-leap method s used as a starting procedure. However, the
correlation order of the predictor-corrector SAMM is only one.



Weak order in mean and variance
X+Y ->0

Kullback Leibler distance for

(i) Linear problem
(i) Michaelis Menten problem

50. Distance to SSA vs Runtime
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VI. T Marquez-Lago, A. Leier and K. Burrage (2010): Probability distributed time delays: integrating
spatial effects into temporal models, BMC Systems Biology, 4:19d0i:10.1186/1752-0509-4-109.

(a) Scenarios 1-3 (b) Scenarios 4 and 5 (c) Scenario 6

incorporate spatial information by
means of tailored, probability
distributed time-delays.

(@) nuclear translocation of particles Ac followed by a unary reaction An — Bn and the
translocation reaction competing with the unary reaction Ac — Bc.

(b) nuclear translocation of Ac followed by a nuclear binary reaction An + Bn — Cn
followed by the cytoplasmic translocation of the product Cn.

(c) upon translocation molecules An and Dn compete for the same binding partner Bn
(An + Bn — Cn and Dn + Bn — En)

(d-e) upon translocation molecules Ac are able to dimerize or bind to a species initially
localized in the cell membrane.

(f) upon translocation molecules Ac dimerize with molecules Bc and their product Cc is
able to translocate back to the nucleus.



Conclusions

Need for new stochastic methods (with good order and stability properties)
In the discrete setting for Intrinsic noise modelling in Systems Biology.

Need for multiscale approaches.

We can use ideas from the deterministic setting to construct effective
methods.

But it is not easy to construct methods with truly high order in both mean
and variance

Issues of the sampling error and multi level (Giles) approaches to improve
efficiency — applied to discrete case by Andersen and Higham.

What can be done spatially?






