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Complex Network Examples

There is no solid definition for what constitutes a complex network.

The following are widely considered to be complex networks:

The Internet

The World Wide Web

Social networks (real-world and online)

Various biological networks



Simulation Motivation

Real-world complex networks can not be studied in their entirety
because:

The network is too large to store in computer memory.

The network frequently changes.

The resources to record the network are not available.

This motivates the simulation of complex networks using random
graphs.



Random Graph Example



Sparse Graph Processes

Let Gn be a random graph of order n.
Consider the graph process (Gn)n≥1.

Let P
(n)
k be the proportion of vertices with degree k in Gn.

Definition

A graph sequence (Gn)n≥1 is called sparse when

lim
n→∞

P
(n)
k = pk , (1)

for some deterministic limiting probability distribution (pk)k≥0.



Scale-Free Graph Processes

Definition

A sparse graph process (Gn)n≥1 is scale-free with exponent α if

lim
k→∞

log(pk)

− log k
= α (2)

where α > 1 and (pk)k≥0 is the limiting probability distribution for
the degree of each vertex.

This means that for large n, each vertex has degree ∝ k−α.
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The Barabási-Albert Model

Denote the Barabási-Albert model with n vertices and parameter
m by BAn(m).

Can think of BAn(m) as an algorithm which takes m and n as
input and returns a random graph as output.

Alternatively BAn(m) denotes the distribution of a random graph
constructed by the Barabási-Albert model.



Informal Description (1)

We can construct Gn ∼ BAn(m) recursively.
Say we have a graph Gn−1 ∼ BAn−1(m). To make Gn we:

1 Add a vertex vn to Gn−1.

Gn−1
vn



Informal Description (2)

2 Add edge {vn, vJ} where vJ ∈ V (Gn−1)∪{vn} with probability

P(J = j) =
δjn + deg(vj)

1 +
∑

vi
deg(vi )

.

where δij is the Kronecker delta.

Gn−1

vJ

vn



Informal Description (3)

3 Repeat step 2 until m edges have been added to Gn−1. Call
the resulting graph Gn.

Gn−1

vJ1
vJ2

vJm
vn



Properties

For m ≥ 1 we have:

Degrees follow a power-law with α = 3.

Graph is not simple.

Graph is not necessarily connected.

A simple and intuitive rule was used to simulate a complex
network.
This “preferential attachment” scheme could explain how complex
networks arise.



Efficient Barabási-Albert

Algorithm 1: BAn(m)

Data: Number of vertices n, parameter m
Result: Barabási-Albert graph G
Initialize graph G to a single vertex with m self-loops;
Initialize degree stack D = (1, 1, ..., 1) which has length m;
for i ← 2 to n do

Add vertex vi to G ;
for j ← 1 to m do

Append i onto D;
Generate J ∼ Discrete Uniform(1, |D|);
Add edge {vD(J), vi} to G ;
Append (D(J)) to D;

end

end



BA100(1) Example



BA1000(2) Example
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The Configuration Model

Denote Confign(x) as the configuration model with n vertices and
degree sequence x .

The output of the configuration model is be a random graph with
degree sequence x .

To make the random graph scale-free, we make the degree
sequence a random vector X .



Random Degree Sequences

The goal is for X = (X1, · · · ,Xn) to exhibit power-law behaviour.
Take Xi ∼ Zeta(α), with 2 ≤ α ≤ 3.

Recall that the density function for the Zeta(α) distribution is

fα(k) = k−α/ζ(α), k = 1, 2, · · · (3)

where ζ(s) is the Riemann-Zeta function.



Informal Description (1)

Assume that x = (x1, x2, · · · xn) has been simulated from X and
that

∑
i xi is even. For example take x = (3, 1, 2, 2).

1 Add n vertices, v1, v2, · · · , vn
2 For each vertex vi , add xi copies of index i to stack H

H = (1, 1, 1, 2, 3, 3, 4, 4)

v1

v2

v3

v4



Informal Description (2)

3 Pop k off the top of stack H

4 Remove l uniformly from the rest of stack H

5 Add edge {vk , vl}

H = (�1, 1, 1, 2, 3, 3, �4, 4) = (1, 1, 2, 3, 3, 4)

v1

v2

v3

v4



Informal Description (3)

6 Repeat from step 3 until H is empty

H = ()

v1

v2

v3

v4



Properties

For Xi ∼ Zeta(α) we have:

Degrees follow a power-law with parameter α

Graph is not necessarily simple

Graph is not necessarily connected

The configuration model has greater flexibility than BA.
However the configuration model does not explain how/why
complex networks exist.



Formal Configuration I

Algorithm 2: Confign(x)

Data: Number of vertices n, degree sequence x
Result: Multigraph G
Initialize the graph G to have n vertices;
Initialize empty stack of half-edges H;
for i ← 1 to n do

for j ← 1 to xi do
Push i onto H;

end

end



Formal Configuration II

while |H| ≥ 2 do
i ← H[1];
Remove H[1] from H;
Generate U ∼ DU(1, |H|);
j ← H[U];
Remove H[U] from H;
Add edge {vi , vj} to G ;

end



Forcing Simplicity

There are two main options to force the graph to be simple:

Erased Configuration

If degree sum is odd, discard the left-over half-edge
Search and destroy parallel edges and self-loops
Advantage: fast and reliable
Disadvantage: each configuration does not occur with equal
probability

Repeated Configuration

Keep generating X and the random graph until the resulting
graph is simple
Advantage: each configuration occurs with equal probability
Disadvantage: Slow and inefficient



Config100(X ) Example (α = 2.5)



Config1000(X ) Example (α = 3)
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