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Complex Network Examples

There is no solid definition for what constitutes a complex network.

The following are widely considered to be complex networks:
m The Internet
m The World Wide Web
m Social networks (real-world and online)

m Various biological networks



Simulation Motivation

Real-world complex networks can not be studied in their entirety
because:

m The network is too large to store in computer memory.
m The network frequently changes.
m The resources to record the network are not available.

This motivates the simulation of complex networks using random
graphs.



Random Graph Example




Sparse Graph Processes

Let G, be a random graph of order n.
Consider the graph process (Gp)p>1.

Let P,En) be the proportion of vertices with degree k in G,,.

Definition

A graph sequence (G,)n>1 is called sparse when

lim P = p,, (1)

n—o0

for some deterministic limiting probability distribution (px)k>o-



Scale-Free Graph Processes

Definition

A sparse graph process (Gp)n>1 is scale-free with exponent « if

. log(pk)
k||—>n;o — log k - (2)

where a > 1 and (pk)k>0 is the limiting probability distribution for
the degree of each vertex.

This means that for large n, each vertex has degree o« k=<.
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The Barabasi-Albert Model

Denote the Barabasi-Albert model with n vertices and parameter
m by BA,(m).

Can think of BA,(m) as an algorithm which takes m and n as
input and returns a random graph as output.

Alternatively BA,(m) denotes the distribution of a random graph
constructed by the Barabdsi-Albert model.



Informal Description (1)

We can construct G, ~ BA,(m) recursively.
Say we have a graph G,_1 ~ BA,_1(m). To make G, we:

1 Add a vertex v, to G,_1.



Informal Description (2)

2 Add edge {v,, v } where v; € V(G,—1) U{vn} with probability

N djn + deg(vj)
P(J=j)= 75, deg(v)’

where §;; is the Kronecker delta.




Informal Description (3)

3 Repeat step 2 until m edges have been added to G,_;. Call
the resulting graph G,.

e
Vn



Properties

For m > 1 we have:
m Degrees follow a power-law with oo = 3.
m Graph is not simple.

m Graph is not necessarily connected.

A simple and intuitive rule was used to simulate a complex
network.

This “preferential attachment” scheme could explain how complex
networks arise.



Efficient Barabasi-Albert

Algorithm 1: BA,(m)
Data: Number of vertices n, parameter m
Result: Barabasi-Albert graph G
Initialize graph G to a single vertex with m self-loops;
Initialize degree stack D = (1,1, ...,1) which has length m;
for i <+ 2 to ndo
Add vertex v; to G;
for j < 1 to mdo
Append i onto D;
Generate J ~ Discrete Uniform(1,|D]);
Add edge {vp(, vi} to G;
Append (D(J)) to D;
end

end




BA10o(1) Example




BA1000(2) Example
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The Configuration Model

Denote Config,(x) as the configuration model with n vertices and
degree sequence x.

The output of the configuration model is be a random graph with
degree sequence x.

To make the random graph scale-free, we make the degree
sequence a random vector X.



Random Degree Sequences

The goal is for X = (X1, -+, X,) to exhibit power-law behaviour.
Take X; ~ Zeta(a), with 2 < o < 3.

Recall that the density function for the Zeta(«) distribution is
fo(k) =k /((a), k=1,2,--- (3)

where ((s) is the Riemann-Zeta function.



Informal Description (1)

Assume that x = (x1, %2, - - - X,) has been simulated from X and
that ) . x; is even. For example take x = (3,1,2,2).

1 Add n vertices, vi, v, -+, v,

2 For each vertex v;, add x; copies of index i to stack H

H = (17 1’ 1’2’ 3’ 37474)

°
V1
° °
Vy Vo
°



Informal Description (2)

3 Pop k off the top of stack H
4 Remove [/ uniformly from the rest of stack H
5 Add edge {vk, v}

H= (171)1’2737374a4) = (171527373’4)

-

Vy Vo



Informal Description (3)

6 Repeat from step 3 until H is empty
H=()

Vi

V3



Properties

For X; ~ Zeta(a) we have:
m Degrees follow a power-law with parameter «
m Graph is not necessarily simple
m Graph is not necessarily connected

The configuration model has greater flexibility than BA.
However the configuration model does not explain how/why
complex networks exist.



Formal Configuration |

Algorithm 2: Config,(x)

Data: Number of vertices n, degree sequence x
Result: Multigraph G
Initialize the graph G to have n vertices;
Initialize empty stack of half-edges H;
for i < 1 to ndo

for j + 1 to x; do

| Push i onto H;

end

end




Formal Configuration Il

while |H| > 2 do

i+ H[1];

Remove H[1] from H;
Generate U ~ DU(1, |H|);
J < H[UJ;

Remove H[U] from H;
Add edge {vj, vj} to G;

end




Forcing Simplicity

There are two main options to force the graph to be simple:

m Erased Configuration
m If degree sum is odd, discard the left-over half-edge
m Search and destroy parallel edges and self-loops
m Advantage: fast and reliable
m Disadvantage: each configuration does not occur with equal
probability

m Repeated Configuration
m Keep generating X and the random graph until the resulting
graph is simple
m Advantage: each configuration occurs with equal probability
m Disadvantage: Slow and inefficient



Config;go(X) Example (a = 2.5)




Config;goo(X) Example (o = 3)
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