Wall Hugger and G143

Timothy Hyndman and Kate Saunders

University of Melbourne

July 21, 2015
Outline

1. Wall Hugger
2. G143
3. Psuedo Oracle
4. Side points
5. Loop Shortening
Figure: One realization of the WallHug algorithm. Oracle calls: 689, Path length: 2.37
Outline

1. Wall Hugger
2. G143
3. Psuedo Oracle
4. Side points
5. Loop Shortening
Realisation

This algorithm extends from Test Algorithm 2; ensuring path feasibility, changing our step size and removing loops.

Figure: An example path found with $n = 400$ and $r = 0.05$.
Left Figure: \(\Delta(ABC) = \frac{1}{2} BC \sin(a) \).

Right Figure: \(2r = \frac{A}{\sin(a)} \).

Find the radius: \(r = \frac{ABC}{4 \Delta(ABC)} \).
Outline

1. Wall Hugger
2. G143
3. Psuedo Oracle
4. Side points
5. Loop Shortening
Psuedo Oracle

If every point within r of x is within r of a miss then x is also a miss.
Psuedo Oracle

If every point within r of x is within r of a miss then x is also a miss.
Psuedo Oracle

If every point within r of x is within r of a miss then x is also a miss.
1. Wall Hugger
2. G143
3. Psuedo Oracle
4. Side points
5. Loop Shortening
Side points

- Line segment has length $2r$
- We want every point within r of the line segment to be within r of a miss
- Test n points each side of line
Line segment has length $2r$
We want every point within r of the line segment to be within r of a miss
Test n points each side of line
Line segment has length $2r$
We want every point within r of the line segment to be within r of a miss
Test n points each side of line
Side points

- Line segment has length $2r$
- We want every point within r of the line segment to be within r of a miss
- Test n points each side of line

Place points at distance $r - y$ from path segment.

\[r^2 = y^2 + \frac{r^2}{n^2} \]
\[y^2 = r^2 \left(1 - \frac{1}{n^2}\right) \]
\[y = r\sqrt{1 - \frac{1}{n^2}} \]
Outline

1. Wall Hugger
2. G143
3. Psuedo Oracle
4. Side points
5. Loop Shortening